首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   48665篇
  免费   3076篇
  国内免费   2123篇
电工技术   2177篇
技术理论   1篇
综合类   3212篇
化学工业   9962篇
金属工艺   3747篇
机械仪表   2960篇
建筑科学   5710篇
矿业工程   2050篇
能源动力   2387篇
轻工业   2659篇
水利工程   887篇
石油天然气   1317篇
武器工业   784篇
无线电   2415篇
一般工业技术   8534篇
冶金工业   3174篇
原子能技术   477篇
自动化技术   1411篇
  2024年   83篇
  2023年   530篇
  2022年   1131篇
  2021年   1406篇
  2020年   1364篇
  2019年   1071篇
  2018年   1058篇
  2017年   1416篇
  2016年   1374篇
  2015年   1361篇
  2014年   2429篇
  2013年   2516篇
  2012年   2919篇
  2011年   3486篇
  2010年   2750篇
  2009年   2972篇
  2008年   2589篇
  2007年   3533篇
  2006年   3127篇
  2005年   2868篇
  2004年   2390篇
  2003年   2149篇
  2002年   1792篇
  2001年   1460篇
  2000年   1259篇
  1999年   1024篇
  1998年   809篇
  1997年   638篇
  1996年   542篇
  1995年   435篇
  1994年   407篇
  1993年   285篇
  1992年   180篇
  1991年   127篇
  1990年   95篇
  1989年   90篇
  1988年   60篇
  1987年   28篇
  1986年   17篇
  1985年   17篇
  1984年   8篇
  1983年   11篇
  1982年   5篇
  1981年   5篇
  1980年   5篇
  1976年   4篇
  1959年   4篇
  1956年   3篇
  1955年   4篇
  1951年   6篇
排序方式: 共有10000条查询结果,搜索用时 242 毫秒
1.
《Ceramics International》2022,48(11):15207-15217
SCAPS solar cell simulation program was applied to model an inverted structure of perovskite solar cells using Cu-doped Ni1-xO thin films as hole transport layer. The Cu-doped Ni1-xO film were made by co-sputtering deposition under different deposition conditions. By increasing the amount of the Cu-dopant, the film crystallinity enhanced whereas the bandgap energy decreased. The transmittance of the thin films decreased significantly by increasing the sputtering power of copper. High quality, uniform, compact, and pin-hole free films with low surface roughness were achieved. The structural, chemical, surface morphology, optical, electrical, and electronic properties of the Cu doped Ni1-xO films were used as input parameters in the simulation of Pb-based (MAPbI3-xClx) and Pb-free (MAGeI3) perovskite solar cells. Simulation results showed that the performance of both Pb-based and Pb-free perovskite solar cell devices significantly enhanced with Cu-doped Ni1-xO film. The highest power conversion efficiency (PCE) for the Pb-free perovskite solar cell is 8.9% which is lower than the highest PCE of 17.5% for the Pb-based perovskite solar cell.  相似文献   
2.
The vanadium hydrides have better hydrogen storage capacity in comparison to the other metal hydrides. Although the structure of VH2 hydride has been reported, the structural stability, electronic and optical properties of VH2 hydride are unclear. To solve these problems, we apply the first-principles method to study the structural stability, electronic and optical properties of VH2 hydrides. Similar to the metal dihydrides, four possible VH2 hydrides such as the cubic (Fm-3m), tetragonal (I4/mmm), tetragonal (P42/mnm) and orthorhombic (Pnma) are designed. The result shows that the cubic VH2 hydride is a thermodynamic and dynamical stability. In particular, the tetragonal (I4/mmm) and the orthorhombic (Pnma) VH2 hydrides are firstly predicted. It is found that these VH2 hydrides show metallic behavior. The electronic interaction of V (d-state)-H (s-state) is beneficial to improve the hydrogen storage in VH2 hydride. In addition, the formation of V–H bond can improve the structural stability of VH2 hydride. Based on the analysis of optical properties, it is found that all VH2 hydrides show the ultraviolet response. Compared to the tetragonal and orthorhombic VH2 hydrides, the cubic VH2 hydride has better storage optical properties. Therefore, we believe that the VH2 hydride is a promising hydrogen storage material.  相似文献   
3.
Development of efficient, low cost and multifunctional electrocatalysts for water splitting to harvest hydrogen fuels is a challenging task, but the combination of carbon materials with transition metal-based compounds is providing a unique and attractive strategy. Herein, composite systems based on cobalt ferrite oxide-reduced graphene oxide (Co2FeO4) @(rGO) using simultaneous hydrothermal and chemical reduction methods have been prepared. The proposed study eliminates one step associated with the conversion of GO into rGO as it uses direct GO during the synthesis of cobalt ferrite oxide, consequently rGO based hybrid system is achieved in-situ significantly, the optimized Co2FeO4@rGO composite has revealed an outstanding multifunctional applications related to both oxygen evolution reaction (OER) and hydrogen counterpart (HER). Various metal oxidation states and oxygen vacancies at the surface of Co2FeO4@rGO composites guided the multifunctional surface properties. The optimized Co2FeO4@rGO composite presents excellent multifunctional properties with onset potential of 0.60 V for ORR, an overpotential of 240 mV at a 20 mAcm?2 for OER and 320 mV at a 10 mAcm?2 for HER respectively. Results revealed that these multifunctional properties of the optimized Co2FeO4@ rGO composite are associated with high electrical conductivity, high density of active sites, crystal defects, oxygen vacancies, and favorable electronic structure arisinng from the substitution of Fe for Co atoms in binary spinel oxide phase. These surface features synergistically uplifted the electrocatalytic properties of Co2FeO4@rGO composites. The multifunctional properties of the Co2FeO4@ rGO composite could be of high interest for its use in a wide range of applications in sustainable and renewable energy fields.  相似文献   
4.
In the last few decades, global warming, environmental pollution, and an energy shortage of fossil fuel may cause a severe economic crisis and health threats. Storage, conversion, and application of regenerable and dispersive energy would be a promising solution to release this crisis. The development of porous carbon materials from regenerated biomass are competent methods to store energy with high performance and limited environmental damages. In this regard, bio-carbon with abundant surface functional groups and an easily tunable three-dimensional porous structure may be a potential candidate as a sustainable and green carbon material. Up to now, although some literature has screened the biomass source, reaction temperature, and activator dosage during thermochemical synthesis, a comprehensive evaluation and a detailed discussion of the relationship between raw materials, preparation methods, and the structural and chemical properties of carbon materials are still lacking. Hence, in this review, we first assess the recent advancements in carbonization and activation process of biomass with different compositions and the activity performance in various energy storage applications including supercapacitors, lithium-ion batteries, and hydrogen storage, highlighting the mechanisms and open questions in current energy society. After that, the connections between preparation methods and porous carbon properties including specific surface area, pore volume, and surface chemistry are reviewed in detail. Importantly, we discuss the relationship between the pore structure of prepared porous carbon with surface functional groups, and the energy storage performance in various energy storage fields for different biomass sources and thermal conversion methods. Finally, the conclusion and prospective are concluded to give an outlook for the development of biomass carbon materials, and energy storage applications technologies. This review demonstrates significant potentials for energy applications of biomass materials, and it is expected to inspire new discoveries to promote practical applications of biomass materials in more energy storage and conversion fields.  相似文献   
5.
纳米药物非临床药代动力学的研究策略及关注要点   总被引:1,自引:0,他引:1  
随着纳米技术的迅速发展,纳米药物的研发已成为目前药物创新的发展方向之一。纳米药物具有基于纳米结构的尺度效应,其药代动力学特征与普通药物相比存在明显差异,其药代动力学研究与普通药物相比也有其特殊性。本文着重探讨纳米药物的非临床药代动力学的研究策略及关注要点,包括受试物、体内/外试验、生物样本分析、数据评价分析等,期望为研发者提供参考。  相似文献   
6.
《Ceramics International》2021,47(18):25505-25513
Herein, (Co0.5Ni0.5)Cr0.3Fe1.7O4/graphene oxide nanocomposites were fabricated by ultrasonication technique, using pure spinel ferrite and graphene oxide synthesized by sol-gel method and modified Hummers' method, respectively. The effect of graphene incorporation with ferrite nanoparticles was studied by X-ray diffraction (XRD), electrical and dielectric measurements. XRD analysis revealed the spinel phase for the ferrite sample and confirmed the formation of graphene oxide. The crystallite size was found in the range of 3743 nm and the porosity increased with the increase in the concentration of graphene oxide in the composites. The DC electrical resistivity of spinel ferrite was found equal to 3.83×109 Ω.cm and it substantially decreased with the increase in the percentage of graphene oxide at room temperature. The real and imaginary part of relative permittivity followed the Maxwell-Wagner type of interfacial polarization. AC conductivity confirmed the conduction by hopping mechanism and increased on increasing the GO content. The coupling of magnetic ferrite with graphene oxide tunes the magneto-electrical properties for potential applications at high frequencies.  相似文献   
7.
This work aimed to examine the performance of the hybrid sintering of clay ceramic in a microwave furnace, compared to the sintering process in a conventional furnace. The raw materials were subjected to X-ray fluorescence, loss on ignition (LOI), X-ray diffraction, particle size distribution, real specific mass, and thermogravimetric analyses. The red clay ceramic mass was prepared, extruded, pre-sintered in a conventional furnace at 600°C/60 min, and sintered at temperatures between 700 °C and 1100 °C. The sintering conventional (resistive oven) was carried out for 60 min with a heating rate of 10°C/min. In the microwave furnace, the sintering times were 5, 10, and 15 min, with a heating rate of 50°C/min, with a sintering chamber coated with silicon carbide (susceptor). The sintered specimens were characterized according to linear shrinkage, water absorption, apparent porosity, apparent specific mass, X-ray diffraction, Raman spectroscopy analysis, spectroscopy analysis in the ultraviolet and visible regions, microhardness, and scanning electron microscopy. The results showed that microwave sintering promoted an increase in the microhardness and apparent specific mass, and reduction in water absorption and apparent porosity values, due to greater densification in the microstructure. The best results occurred for specimens sintered at 1100°C.  相似文献   
8.
9.
In this study, seven different filler materials in different proportions were added to a Ba-Ca-Si glass matrix “H” to investigate new sealant with higher thermal expansion coefficient (CTE) value and good sealing performance for application in oxygen transport membrane (OTM). SrTi0.75Fe0.25O3-δ (STF25) was used as an OTM, and the sealing partners were ferritic steel Aluchrom and pre-oxidized Aluchrom. Compatibility tests were carried out to investigate the feasibility of the composites. Higher CTE values were found in dilatometer tests on composite samples by adding 40 wt% Ag (HAg40) and 30 wt% Ni-Cr (HNC30). Gas-tightness measurements of sandwiched samples produced appropriate helium leakage rates in the range of 10?6 mbar·l·s?1. Sealing behaviour of sealants HAg40 and HNC30 were investigated by joining STF25 and as-delivered/pre-oxidized Aluchrom together. Scanning electron microscopy (SEM) on cross-sections of the joints revealed a homogeneous microstructure and good adherence of the glass sealants to support metals and STF25.  相似文献   
10.
介绍了高分子材料导热性能影响因素研究进展,重点阐释了聚合物基体的结构特性(链结构、分子间相互作用、取向、结晶度等)、导热填料(种类、含量、形态、尺寸等)以及制备方法等对高分子材料导热性能的影响。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号